Mean State

Download Data
Period Mean (original grids) [g m-2 d-1]
Bias [g m-2 d-1]
RMSE [g m-2 d-1]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] -0.130
ACCESS-ESM1-5 [-] 0.138 0.267 1.47 3.57 0.556 0.250 0.306
BCC-CSM2-MR [-] -0.117 0.0130 1.36 4.81 0.791 0.274 0.372
CanESM2 [-] 0.0103 0.137 1.16 3.51 0.653 0.317 0.243
CanESM5 [-] 0.0355 0.165 1.42 2.74 0.620 0.266 0.413
CESM2 [-] 0.127 0.256 1.61 4.21 0.557 0.201 0.294
CNRM-ESM2-1 [-] 0.145 0.275 1.52 3.76 0.500 0.229 0.252
EnsembleCMIP5 [-] 0.169 0.292 1.73 3.88 0.486 0.208 0.242
EnsembleCMIP6 [-] 0.0854 0.215 1.44 4.08 0.554 0.248 0.308
GFDL_ESM4 [-] 0.372 0.501 1.85 3.64 0.405 0.194 0.281
IPSL-CM5A-LR [-] 0.152 0.290 1.94 4.08 0.494 0.178 0.301
IPSL-CM6A-LR [-] 0.107 0.237 1.22 3.95 0.537 0.303 0.336
MIROC-ES2L [-] 0.106 0.236 2.32 4.57 0.563 0.128 0.305
MPI-ESM-LR [-] 0.326 0.477 2.47 3.47 0.399 0.113 0.298 0.231
MPI-ESM1-2-LR [-] 0.166 0.296 1.86 4.14 0.503 0.174 0.302
NorESM1-M [-] 0.0328 0.166 1.37 4.66 0.615 0.264 0.361
NorESM2-LM [-] 0.103 0.233 1.55 4.21 0.547 0.229 0.294
UKESM1-0-LL [-] 0.0977 0.227 1.60 4.08 0.544 0.220 0.326
Download Data
Period Mean (original grids) [g m-2 d-1]
Bias [g m-2 d-1]
RMSE [g m-2 d-1]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] -0.663
ACCESS-ESM1-5 [-] 0.377 1.05 2.41 4.03 0.288 0.273 0.164
BCC-CSM2-MR [-] 0.0636 0.727 2.43 4.33 0.380 0.243 0.185
CanESM2 [-] 0.0236 0.791 2.17 2.84 0.386 0.307 0.590
CanESM5 [-] 0.0295 0.693 2.62 3.33 0.394 0.216 0.251
CESM2 [-] 0.184 0.841 2.53 4.20 0.347 0.247 0.151
CNRM-ESM2-1 [-] 0.157 0.820 2.47 3.99 0.350 0.244 0.186
EnsembleCMIP5 [-] 0.185 0.900 2.58 4.29 0.364 0.252 0.184
EnsembleCMIP6 [-] 0.232 0.895 2.41 4.18 0.324 0.259 0.169
GFDL_ESM4 [-] 0.538 1.20 2.74 3.95 0.248 0.227 0.212
IPSL-CM5A-LR [-] 0.358 1.13 3.12 4.09 0.293 0.209 0.273
IPSL-CM6A-LR [-] 0.235 0.903 2.45 3.88 0.328 0.258 0.200
MIROC-ES2L [-] 0.291 0.954 2.55 4.14 0.316 0.259 0.207
MPI-ESM-LR [-] 0.441 1.19 3.41 3.93 0.283 0.163 0.248 0.214
MPI-ESM1-2-LR [-] 0.191 0.850 2.77 4.11 0.339 0.219 0.168
NorESM1-M [-] 0.0900 0.847 2.45 4.27 0.370 0.249 0.214
NorESM2-LM [-] 0.184 0.847 2.51 4.14 0.342 0.247 0.156
UKESM1-0-LL [-] 0.136 0.794 2.40 4.19 0.360 0.254 0.182

Temporally integrated period mean

BENCHMARK MEAN
Data not available
Data not available
MODEL MEAN
Data not available
Data not available
BIAS
Data not available
Data not available
BIAS SCORE
Data not available
Data not available
RMSE
Data not available
Data not available
RMSE SCORE
Data not available
Data not available
BENCHMARK MAX MONTH
Data not available
Data not available
MODEL MAX MONTH
Data not available
Data not available
DIFFERENCE IN MAX MONTH
Data not available
Data not available
SEASONAL CYCLE SCORE
Data not available
Data not available

Spatially integrated regional mean

MODEL COLORS
Data not available
REGIONAL MEAN
Data not available
ANNUAL CYCLE
Data not available
MONTHLY ANOMALY
Data not available
ANNUAL CYCLE
Data not available

Relationships

Download Data
Precipitation|GPCPv2.3 Hellinger Distance [1]
SurfaceDownwardSWRadiation|CERESed4.1 Hellinger Distance [1]
Precipitation|GPCPv2.3 Score [1]
SurfaceDownwardSWRadiation|CERESed4.1 Score [1]
Overall Score [1]
ACCESS-ESM1-5 [-]
BCC-CSM2-MR [-]
CanESM2 [-]
CanESM5 [-]
CESM2 [-]
CNRM-ESM2-1 [-]
EnsembleCMIP5 [-]
EnsembleCMIP6 [-]
GFDL_ESM4 [-]
IPSL-CM5A-LR [-]
IPSL-CM6A-LR [-]
MIROC-ES2L [-]
MPI-ESM-LR [-] 0.00
MPI-ESM1-2-LR [-]
NorESM1-M [-]
NorESM2-LM [-]
UKESM1-0-LL [-]
Download Data
Precipitation|GPCPv2.3 Hellinger Distance [1]
SurfaceDownwardSWRadiation|CERESed4.1 Hellinger Distance [1]
Precipitation|GPCPv2.3 Score [1]
SurfaceDownwardSWRadiation|CERESed4.1 Score [1]
Overall Score [1]
ACCESS-ESM1-5 [-] 0.734 0.234
BCC-CSM2-MR [-]
CanESM2 [-]
CanESM5 [-]
CESM2 [-] 0.674 0.286
CNRM-ESM2-1 [-] 0.644 0.323
EnsembleCMIP5 [-]
EnsembleCMIP6 [-]
GFDL_ESM4 [-] 0.713 0.205
IPSL-CM5A-LR [-] 0.666 0.222
IPSL-CM6A-LR [-] 0.774 0.284
MIROC-ES2L [-] 0.705 0.269
MPI-ESM-LR [-] 0.00
MPI-ESM1-2-LR [-]
NorESM1-M [-] 0.561 0.327
NorESM2-LM [-] 0.659 0.308
UKESM1-0-LL [-] 0.585 0.325

Precipitation/GPCPv2.3

Data not available
Data not available
Data not available

SurfaceDownwardSWRadiation/CERESed4.1

Data not available
Data not available
Data not available

All Models

Benchmark
Data not available
Data not available
ACCESS-ESM1-5
Data not available
Data not available
BCC-CSM2-MR
Data not available
Data not available
CanESM2
Data not available
Data not available
CanESM5
Data not available
Data not available
CESM2
Data not available
Data not available
CNRM-ESM2-1
Data not available
Data not available
EnsembleCMIP5
Data not available
Data not available
EnsembleCMIP6
Data not available
Data not available
GFDL_ESM4
Data not available
Data not available
IPSL-CM5A-LR
Data not available
Data not available
IPSL-CM6A-LR
Data not available
Data not available
MIROC-ES2L
Data not available
Data not available
MPI-ESM-LR
Data not available
Data not available
MPI-ESM1-2-LR
Data not available
Data not available
NorESM1-M
Data not available
Data not available
NorESM2-LM
Data not available
Data not available
UKESM1-0-LL
Data not available
Data not available

Data Information

  Title:
FluxNet Tower eddy covariance measurements (Tier 1)

  Version:
2015

  Institutions:
FluxNet, AmeriFlux, AfriFlux, AsiaFlux, ChinaFlux, Fluxnet-Canada, KoFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, GreenGrass, OzFlux-TERN, LBA, NECC, ICOS, TCOS-Siberia, and USCCC

  References:
Reichstein, M., D. Papale, R. Valentini, M. Aubinet, C. Bernhofer, A. Knohl, T. Laurila, A. Lindroth, E. Moors, K. Pilegaard, and G. Seufert (2007), Determinants of terrestrialecosystem carbon balance inferred from European eddy covarianceflux sites, Geophys. Res. Lett., 34, L01402, doi:10.1029/2006GL027880

Lasslop, G., M. Reichstein, D. Papale, A.D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. Wohlfahrt (2010), Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, Global Change Biology, 16, 187-208, doi:10.1111/j.1365-2486.2009.02041.x

Knauer, J., S. Zaehle, B.E. Medlyn, M. Reichstein, C.A. Williams, M. Migliavacca, M.G. De Kauwe, C. Werner, C. Keitel, P. Kolari, J.-M. Limousin, and M.-L. Linderson (2018), Towards physiologically meaningful water use efficiency estimates from eddy covariance data, Global Change Biology, 24(2), 694-710, doi:10.1111/gcb.13893

  Comment:
Fluxnet variable(s) used: NEE_VUT_REF